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A B S T R A C T

Background: Electronic Healthcare Records (EHRs) are created to capture summaries of care and contact made
to healthcare services. EHRs offer a means to analyse admissions to hospitals for epidemiological research. In the
United Kingdom (UK), England, Scotland and Wales maintain separate data stores, which are administered and
managed exclusively by devolved Government. This independence results in harmonisation challenges, not least
lack of uniformity, making it difficult to evaluate care, diagnoses and treatment across the UK. To overcome this
lack of uniformity, it is important to develop methods to integrate EHRs to provide a multi-nation dataset of
health.
Objective: To develop and describe a method which integrates the EHRs of Armed Forces personnel in England,
Scotland and Wales based on variable commonality to produce a multi-nation dataset of secondary health care.
Methods: An Armed Forces cohort was used to extract and integrate three EHR datasets, using commonality as
the linkage point. This was achieved by evaluating and combining variables which shared the same char-
acteristics. EHRs representing Accident and Emergency (A&E), Admitted Patient Care (APC) and Outpatient care
were combined to create a patient-level history spanning three nations. Patient-level EHRs were examined to
ascertain admission differences, common diagnoses and record completeness.
Results: A total of 6,336 Armed Forces personnel were matched, of which 5,460 personnel had 7,510 A&E visits,
9,316 APC episodes and 45,005 Outpatient appointments. We observed full completeness for diagnoses in APC,
whereas Outpatient admissions were sparsely coded; with 88% of diagnoses coded as “Unknown/unspecified cause
of morbidity”. In addition, A&E records were sporadically coded; we found five coding systems for identifying
reason for admission.
Conclusion: At present, EHRs are designed to monitor the cost of treatment, enable administrative oversight, and
are not currently suited to epidemiological research. However, only small changes may be needed to take ad-
vantage of what should be a highly cost-effective means of delivering important research for the benefit of the
NHS.
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1. Background

Routinely collected Elxectronic Healthcare Records (EHRs) can be
used to evaluate disease prevalence, tendencies, and to perform epi-
demiological analyses [1]; investigate quality of care and to improve
clinical decision-making, which can influence patient outcome and care
[2,3]. In recent years, there has been a growth in the use of EHRs in the
field of Big Data analytics, which is the analysis and evaluation of large
datasets, to answer specific research questions [4,5]. The term “Big
Data” [6] has been used in a number of health settings, it is synonymous
with the meaningful analyses of EHRs to identify health movements and
associations [7]. Further, Schneeweiss et al. [8] summarises the po-
tential applications into two key areas: generation of knowledge to
improve the effectiveness of treatment; and to predict the outcome of
treatment and diagnoses.

Globally, the development and use of EHRs is increasing, alongside
Big Data innovation in a number of fields [8–10]. Standardised EHR
systems are difficult to implement in larger countries, those which have
complex political structures or multiple private entities [11], such as
the United States. In the United Kingdom (UK), health and social care is
devolved to national Government and local agencies using propriety
systems which are not interconnected or able to identify patients who
relocate from a nations [11–13]. In the UK, it is estimated that 53,000
individuals migrate from England and Wales to Northern Ireland and
Scotland; with 46,800 individuals migrating from Northern Ireland and
Scotland to England and Wales each year [14]. At present, migration
statistics are not reported separately, making it difficult to determine
cross-border migration. EHRs which represent the same patient across
the three nations show great promise and could be used to identify risk,
inform healthcare policy, service provision and improve health and
social outcomes [13,15,16]. Using a cross-border cohort might provide
the foundation of creating such a system. While several studies have
sought to create national datasets of health and social care [4,17], to
our knowledge, no studies exist which integrate EHRs from multiple
nations into a single repository for research.

There are multiple challenges in integrating EHRs in the UK. Firstly,
there is no system or framework which uniquely identifies a person (e.g.
unique ID number for each citizen) across public services such as wel-
fare, housing, education and health [18]. Those registered with the

National Health Service (NHS) of England and Wales are assigned a
unique 10-digit number, which is used as the sole identifier in health-
care [19]. Similarly, in Scotland a person is assigned a Community
Health Index (CHI) number which is used in the same manner. Second,
EHRs provided by England [20], Wales [4,17] and Scotland [21] are
distinctive in structure, collection and management. Third, EHR data
from each of these data sources include various data types, from
structured information such as drug prescriptions, diagnoses and
treatment, to unstructured data such as clinical notes and patient self-
reported illness [11]. Finally, there is a dearth of literature which de-
scribes how to undertake EHR data linkage from multiple data sources
[22].

Current research efforts have been directed towards modelling and
predicting single conditions (e.g. depression, diabetes and epilepsy) and
outcomes [3,16,23,24]. In this work, we study a UK Armed Forces co-
hort [25,26] (which includes individuals from England, Scotland and
Wales) that has been linked separately to three sources of national
secondary healthcare data. These data have then been integrated to
form a patient-level dataset across 3 nations which include A&E, Out-
patient Care and Admitted Patient Care (APC). The subsequent dataset
is unique, population-based longitudinal dataset that contains a wide
range of physical and mental health indicators of serving and ex-serving
UK Armed Forces personnel. The objectives of this work are; 1) to de-
velop and describe a methodology which integrates EHRs of Armed
Forces personnel in England, Scotland and Wales 2) examine healthcare
utilisation within these data and 3) evaluate characteristics of admis-
sion, record completion and diagnoses.

2. Methods

The proposed framework is illustrated in Fig. 1, and is represented
by the following stages:

1. Demographic identifiers of Armed Forces personnel are sent to each
data provider;

2. EHRs are extracted and sent to the research team by data providers;
3. EHRs are cleaned and validated;
4. Variables are linked using commonality;
5. EHRs for each patient are integrated to generate a patient-level

Fig. 1. Overview of the data linkage process and formation of patient-level dataset.
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dataset.

2.1. King’s centre for military health research (KCMHR) cohort

UK Armed Forces personnel receive all secondary care from the NHS
while in service in the UK and after they have left service from the NHS.
This study uses the example of an Armed Forces population to integrate
data from England, Scotland and Wales. The reasons for this are 1) they
frequently move/relocate, so it is important to capture EHRs from
across the nations and 2) they may have different health needs due to
being exposed to a high level of physical and mental strain. This study
used the KCMHR cohort, which is a longitudinal cohort of the UK
Armed Forces (full details of the methods and sample description were
previously reported in [25,26]), to develop methodologies to integrate
EHR data. Briefly, data was collected in 2004–2006 from a sample of
personnel deployed to the Iraq war during 2003 and from a sample of
personnel serving in the UK Armed Forces but who did not deploy at
that time (phase 1). Phase 1 participants were then followed up in
2007–2009, where two new samples were introduced to represent the
demographics of the Armed Forces at that time point (phase 2). In-
dividuals who took part in phase 1 only were not included in the study
as they had not been asked for consent to access their medical records.
Participants were only included in the study if they provided content for
us to access their medical records, but the authors also sought and
obtained a section 251 of the National Health Service Act 2006 [27]
approval to allow transfer of confidential participant information to
data providers for processing (to facilitate data linkage). In total,
86.11% of phase 2 respondents provided informed consent to access
their healthcare records, resulting in a final cohort of 8,602. The con-
senting cohort available for data extraction and integration comprised
7,661 (89.06%) males and 941 (10.94%) females, which is in line with
the demographics of the UK Armed Forces.

2.2. Data providers

EHRs are managed by NHS Digital in England [20], Secure Anon-
ymised Information Linkage (SAIL) in Wales [4,17] and Information
Service Division (ISD) in Scotland [21]. Table 1 illustrates the datasets,
periods of interest and requested number of variables. Variables that
were comparable (e.g. similar in content and type) between data pro-
viders were requested. Where available, data was requested for the fi-
nancial years 2003/04 to 2013/14 or closest available.

2.3. Extracting electronic healthcare records

Data extraction was performed independently of the authors
through the data providers to preserve privacy. Providers were supplied
a set of demographic variables; 10-digit NHS number (where available),
first name, middle name, surname, gender and date of birth (DOB).
When providing extracted data, providers removed all demographic
identifiers (e.g. first name, last name); to enable identification the au-
thors supplied a unique identifier to represent each participant. For

clarity, the extraction process is described hereafter, data extraction
had no impact on the creation of the framework or integrated datasets.

NHS Digital required a valid NHS number to identify any individual
and extract Health Episode Statistics (HES) EHR data. Valid NHS
numbers were mapped with an internal identifier, the HES ID. EHRs
were extracted if any of the following conditions were met: (1) match
on NHS number, gender and DOB; (2) match on NHS number, partial
match for gender or DOB; (3) match on NHS number only.

SAIL operated a two-stage extraction process to preserve privacy.
First, demographic variables were supplied by the Data Provider to NHS
Wales Informatics Service [28] where they were cross-referenced using
a fuzzy matching procedure to create the Anonymised Linkage Field (a
unique SAIL databank identifier). Second, NHS Wales Informatics Ser-
vice supplied the Anonymised Linkage Field to the SAIL databank to
join with record details provided to SAIL to produce an anonymised
version of each dataset, linkable at the individual level to EHR datasets
within SAIL.

ISD did not require a NHS/CHI number for matching. Participant
demographics were cross-matched using probabilistic linking to iden-
tify a) valid NHS/CHI number; b) to confirm the NHS/CHI number is
valid. EHRs which belonged to a valid CHI number were identified and
extracted.

Data from each provider was supplied in financial year using a
comma separate file format.

2.4. Developing the integrated dataset using variable commonality

The datasets contain many variables (Table 1); however, it is not
practical to directly link, integrate, or combine variables which may be
named or categorised differently. To overcome this, we assessed vari-
able commonality; defined as those variables which represent similar
data mediums but categorised in a different manner. The framework
solely categorised variables based on the data they hold. For example,
each dataset contained a variable which identified speciality; however,
the coding schemes were different, therefore a new coding scheme was
developed to be usable across all data providers. Table 2 defines the
variable categories of interest. Variables which did not match the de-
finition, or were only available for one data source were not selected
unless they contributed and provided valuable insight (e.g. method of
admission). Discussions were held within the research team to discuss
variable categorisation, matching and development of coding schemes.

NHS Digital (HES datasets), the largest data provider of EHRs in the
UK, was selected as the anchor for comparison to other datasets.

Variable commonality was undertaken in three stages. First, in-
dividually for each data provider; A&E, APC and Outpatient variables
were grouped using the categories defined in Table 2. Second, variables
that matched across the datasets were identified (e.g. admission date,
discharge date, diagnoses and treatment). Finally, variables that were
similar in nature were identified and a common coding scheme was
developed to reflect coding schemes used by data providers (e.g. source
of admission, source of discharge and source of injury) with the ob-
jective of having a single coding scheme. Supplement 1 outlines

Table 1
Defines the terminology used by data providers, data periods of interest and number of variables requested.

Terminology NHS Digital Secure Anonymised Information Linkage (SAIL) Information Services Division (ISD)

Accident and Emergency (A&E) Year range 2007/08–2013/14 2009/10–2013/14 2003/04–2013/14
Dataset Accident and Emergency Emergency Department Data Set Accident and Emergency
Variable Count 142 69 42

Admitted Patient Care (APC) Year range 2003/04–2013/14 2003/04–2013/14 2003/04–2013/14
Dataset Admitted Patient Care Patient Episode Database for Wales Scottish Morbidity Records 01
Variable Count 265 115 36

Outpatient Year Range 2003/04–2013/14 2004/05–2013/14 2003/04–2013/14
Dataset Outpatient Outpatient Outpatient
Variable Count 96 46 32
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variables linked for each dataset and data provider.
Admitted Patient Care EHRs across the data providers, include de-

tails of the patient, when they were treated, where they were treated
and what they were treated for. As illustrated in Table 1, APC records
contain the largest number of variables compared to other departments.
Variables identified include admission/discharge date, care provider,
speciality and costing codes. For variables such as consultant speciality
and admission/discharge source a national coding scheme was used.
We developed a common coding scheme which was inclusive and re-
presentative of national coding schemes. Codes which were ambiguous
or not an identical match to other nations were retained. Primarily,
diagnoses were coded using the International Classification of Diseases,
10th revision (ICD-10) and interventions and procedures are coded
using OPCS Classification of Interventions and Procedures version 3 or
4 (OPCS-4).

Outpatient appointments were recorded across the data providers,
including appointment date, appointment treatment, care provider and
outcomes. Variables differed widely across the data providers due to
service provision and method of recording the visit. Variables identified
for joining included appointment date, status of appointment atten-
dance, diagnosis and speciality. For variables such as attendance type
and appointment source, a common coding scheme was developed
bringing together individual nation coding schemes. Codes which were
ambiguous (without a suitable definition) or not an identical match
were retained separately. Diagnoses, interventions and procedures were
coded using ICD-10 and OPCS across the data providers.

Accident and Emergency attendance was recorded differently across
the data providers, and for NHS Digital HES data were different be-
tween hospital trusts. Variables such as admission date, treatment time,
conclusion time and discharge time/location were linked based on
commonality. Major differences were observed when coding the reason
for the visit to A&E; unlike APC, which utilises the ICD-10 coding
system across the combined dataset, A&E does not use a national
standard. For example, within England, care providers utilise a local
coding system, ICD-10 coding or a NHS England coding standard
[29,30].

2.5. Integrated patient record and data cleaning

A patient-level EHR dataset was constructed using a five-stage in-
tegration process. First, Continuous Inpatient spells were computed for
APC in HES, ISD and SAIL separately. A Continuous Inpatient spell is
considered as a continuous period of care within the NHS, regardless of
any transfers between care providers that may take place [31]; it can
comprise one or more providers but starts when a decision has been
made to admit the patient (admission date), and ends when the patient
dies or is discharged from hospital (discharge date). APC records are
treated differently to other EHRs (e.g. A&E, Outpatient) as a patient can
have multiple episodes of care relating to a single admission into hos-
pital. Second, admission and discharge date (A&E, Outpatient and APC)
were checked to ensure consistency and that a valid date was present.

Third, duplicate records (A&E, Outpatient and APC) relating to the
same period of care or admission were identified and excluded. Fourth,
EHR (A&E, Outpatient and APC) for the same individual were brought
together within HES, SAIL and ISD to create a personal admission his-
tory for England, Wales and Scotland respectively using the unique
identifier. Finally, admission history across the nations was merged to
the KCMHR Armed Forces cohort to create a patient-level history for A&
E, APC and Outpatient care.

2.6. Data analysis

This work compared the matched sample (n= 6,336) with the non-
matched sample (n=2,266) to assess differences on a range of de-
mographic factors. Analyses including median and frequencies were
computed in Stata 12 [32]. In addition, the following descriptive ana-
lyses were performed:

• Linkage rate overall and by nation were computed using record
matching information supplied by national data providers. The
analyses were undertaken using those who gave consent for their
medical records to be accessed (n=8,602). Results were presented
as frequency and percentage values. Students’ t-test was performed
to identify significance in the matching.

• Departmental utilisation was calculated based on the number of
visits a patient made to the department. Gender frequencies and
percentages were computed to provide a breakdown of depart-
mental admissions.

• Common conditions were calculated by summing the number of
events for each 3-digit ICD-10 code and represented as a frequency.
Gender frequencies and percentages were computed for each
common condition.

• The total numbers of hospital visits were calculated by summing the
number of events per participant matched for each department. The
frequency, median and inter-quartile range (IQR) were computed at
the patient-level as the data was not normally distributed.

• Variable completeness was calculated as the number of valid vari-
able entries compared to missing or null entries (where 0 is treated
as a valid entry). Valid variable entries were represented by records
which have a value which is not null or missing. Results were pre-
sented as percentages.

It should be noted that the unit of analysis is the patient, rather than
hospital, geographical region or nation.

3. Results

3.1. Overview of the data linkage

The completeness of demographic variables, which may impact data
extraction, contained within the KCMHR Armed Forces cohort is pre-
sented in Table 3. The number of participants matched was 6,336

Table 2
Stipulates the definition used for associating variables to a commonality category.

Category Criteria

Admittance/Discharge Variables that provide information on the admission and discharge of a patient. This includes admission and discharge date, episode
information, time of admission, source of admission and destination of patient upon discharge.

Diagnosis/Classification Variables that provide information on the diagnosis of the patient, including ICD-10 coding and date of diagnosis, A&E coding or local
diagnoses coding system.

Treatment/Procedure/Investigation Variables that provide information on the treatment/procedures undertaken, including OPCS Classification of Interventions and Procedures
version 4 coding, or local diagnoses coding system.

Care Provider Variables that provide information on the provider of care, including geographical location and provider type.
Care Speciality Variables that provide information on the speciality of care, including consultant association, department of care and clinical staff role.
Costing/Resources Variables that provide information on the cost of care, including cost of treatment, staffing costs and direct costs incurred by the care

provider.

D. Leightley et al. International Journal of Medical Informatics 113 (2018) 17–25

20



(74%) as illustrated in Fig. 2. The proportion matched was greater in
those with a NHS/CHI number compared to those without, with the
latter restricted to matching in Wales and Scotland. This was due to the
NHS Digital in England requiring a valid NHS number for matching
(blocking variable). Of individuals matched, 4,460 were matched in
England only (71%), 257 were matched in Wales only (4%), 826 in
Scotland only (13%) and 793 were matched in more than one nation
(12%). 5,460 participants had a hospital contact during the period of
interest.

3.2. Overview of healthcare utilisation

The highest proportion of hospital visits recorded for England was
5,221 participants compared to Scotland with 1,233 participants or
Wales with 699 participants (Fig. 2). The overall number of hospital
episodes for each nation and department is presented in Table 4. In
summary, A&E had a median of 2 (interquartile range [IQR] 2) ad-
missions per participant, APC had a median of 2 (IQR: 2) episodes per
participant and Outpatient had a median of 5 (IQR: 8) appointments per
participant.

3.3. Healthcare utilisation and diagnoses in accident and emergency

A total of 3,192 participants had 7,510 admissions to A&E (2,813
(88.13%) males and 379 (11.87%) females). 253 variables were avail-
able for linkage, we derived 102 common variables. Out of the

Table 3
Completeness of KCMHR demographics (n= 8,602). 1NHS/CHI number is complete if length is greater than 8. CHI number serves the same purpose as NHS number for Scotland. 2Valid if
length 1 or greater. 3Valid if date of birth is present e.g. DD/MM/YY or DD/MM/YYYY.% represents row percentages.

NHS Number/CHI Number1 Initial Forename2 Surname2 Gender Date of Birth3

Variable Completeness 6877 (79.95%) 8179 (95.08%) 8413 (97.8%) 8602 (100%) 8602 (100%) 8597 (99.94%)
Missing Values 1725 (20.05%) 423 (4.92%) 189 (2.2%) 0 0 5 (0.06%)

Fig. 2. Data extraction, number of participants matched and the total number of EHR for each data source divided by those with and without an NHS/CHI number. Note: A participant can
appear in multiple nation data providers. Percentage figures are cascading, where the percentage is out of the preceding value.

Table 4
Represents the number of episodes and participant numbers for each department and
nation. Percent values represent the percentage of the matched sample (n=6336).

Department NHS
Digital

Secure
Anonymised
Information
Linkage

Information
Services
Division

Accident and
Emergency

Episodes 6775 392 343
Participant 2873

(45.44%)
163 (2.77%) 206 (3.25%)

Admitted
Patient
Care

Episodes 7516 444 577
Participant 2970

(46.77%)
176 (19.3%) 251 (3.96%)

Outpatient Episodes 41,026 1703 2276
Participant 4300

(67.87%)
240 (3.79%) 435 (6.87%)
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admissions to A&E, 90.32% were discharged or transferred to a ward on
the day of admission, with 9.62% spending at least 24 h within A&E.
There were five methods identified for recording reason for an admis-
sion; for England: ICD-10, local coding and regional coding schemes,
Wales: ICD-10 and regional coding schemes, finally Scotland: ICD-10
and free-text input. The most common mode of attendance was self-
presentation (75.50%) followed-by road ambulance (7.49%) and then
hospital transfer (6.52%).

Variable completeness of the original data providers (Table 1),
measured as a valid value being present was 47.12% (Table 5). This
reflects a code presence of less than 60% for A&E admissions with
Reason for Admission, Treatment and Investigation. It is important to
note that Reason for Admission relates to the presenting complaint(s) of
the patient upon admission, in England up to 12 can be recorded. As
illustrated in Table 5, completeness for Reason for Admission was
56.43%, meaning that almost half of all admissions did not have any
presenting complaint or assigned diagnoses. Conversely, variables re-
lated to the patient admission, care provider and cost were consistently
coded (> 90%).

3.4. Healthcare utilisation and diagnoses in admitted patient care

A total of 3,324 participants had 9,316 episodes, 2,842 were male
(85.50%) and 482 were female (14.50%); 416 variables were present
from the nations, with 89 common variables identified to represent a
single episode. Overall, variable completeness across the derived da-
taset, in terms of a value being present was 78.06% (Table 5). All
episodes were recorded with at least one diagnosis using ICD-10 coding
scheme with full completeness across all three nations. There was high
variable completeness amongst Admittance, Diagnosis/Classification
and Care Speciality variable groups (> 85%). Conversely, variables
related to the patient discharge, episode order and cost were more
likely to be missing data (< 80%).

Unlike A&E or Outpatient EHR, each record was accompanied by a
diagnosis; completeness was 100%. In this population, 17,541 in-
dividual ICD-10 diagnoses, representing 963 ICD-10 (3-digit) disease
groups including primary and secondary diagnoses were recorded.
Aggregating the ICD-10 code Z51 representing “Other medical care” was
the most common (Table 6). Predominately, males across all codes are
more likely to be admitted than females (except in the event of “Out-
come of Delivery” which relates to child birth); this is not unexpected, as
the cohort is largely male. The most common source of an admission
was the residential home of the patient (90.07%) and other NHS hos-
pitals was the second most common source (8.08%). Five participants
died during a hospital episode.

3.5. Healthcare utilisation and diagnoses in outpatient services

A total of 4,810 participants had 45,005 appointments, with 4,178
(86.86%) male and 632 (13.14%) female. Multiple coding systems were
employed to encode diagnoses of an outpatient visit, including ICD-10
and free text. The most common ICD-10 code is R69, defined as
“Unknown and unspecified causes of morbidity” assigned to 87.57% of all
appointments. Only 5.16% of appointments were not coded with any
type of diagnosis. England had the largest number of visits with a
proportion of 91.34% compared to Scotland 4.72% and Wales 3.94%.

In total, 174 variables, which represent all three nations, were
grouped resulting in 46 common variables being defined. Overall
completeness of the derived variables, in terms of a value being present
was an average of 57.11% (Table 5). Appointments were coded with an
appointment date, with the reason for attendance fully coded. Con-
versely, there was poor coding for appointment waiting time, priority
status, diagnoses and speciality (< 70%).

4. Discussion

Our work introduces a framework to integrate data from national
providers to produce a combined dataset of secondary health for ser-
ving and ex-serving Armed Forces personnel. This work can also be
applied to other settings and populations. We have shown that a linked
dataset containing national EHRs can be created and used to evaluate
healthcare utilisation across England, Scotland and Wales. However, it
is important to acknowledge that we do not know how many persons
with an admission were not detected due to the matching and extrac-
tion methodology employed by data providers. Using linked EHRs,
clinicians and researchers can monitor and improve admissions, quality
of care, improve clinical decision making, and to influence patient
outcomes and care. We have been able to use the data to show the
frequency of APC, Outpatient and A&E visits, diagnosis and arrival
mode for Armed Forces personnel. Conversely, we have identified dis-
parities between data providers and their methods of recording, vali-
dating and storing of data which has been shown to impact data quality
and reliability. Similarly, data completeness and accuracy in assigning
presentation or diagnoses code values are of concern in A&E and
Outpatient data across the nations. For Outpatient EHRs, diagnoses and
main procedure variables were not a mandatory requirement, however
recording is increasing over time [33]. Nevertheless, APC has been
shown to consist of valid data points including diagnoses, treatments
and operations, and admission/discharge dates. To our knowledge, this
is the first to both link secondary care datasets across England, Scotland
and Wales and to analyse Armed Forces personnel EHR data.

Table 5
Variable completeness for a sample of common variables formed in England, Scotland and Wales.

Data Source Common Variable (national assigned variable name) NHS Digital Information Services Division Secure Anonymised Information Linkage

Accident & Emergency Reason for Admission1 42.44% 67.93% 58.93%
Attendance Category (attendance_cat) 100% 100% 100%
Admission Time (time_arrival) 87.13% 93.76% 90.51%
Arrival Mode (arrival_mode) 100% 97.96% 100%
Provider Code (provider_code) 100% 100% 100%

Admitted Patient Care Primary (1st) Diagnosis (diag_01) 100% 100% 100%
Admission Source (admin_source) 98.59% 100% 100%
Main Speciality (main_speciality) 100% 97.13% 98.08
Operation (oper_01) 100% 72.62% 68.52%
Discharge Method (dist_meth) 100% 77.34% 79.09%

Outpatient Attend (attended) 100% 77.07% 80.28%
Attended Type (attend_type) 100% 100% 100%
Main Speciality (main_ speciality) 100% 100% 100%
Referral Source (ref_source) 100% 78.60% 100%
Diagnosis (diag_01)2 97.98% 100% 100%

1 Represents a group of variables which describe the anatomical area, side body and presenting diagnosis.
2 “Unknown and unspecified causes of morbidity” assigned to 87.57% of all appointments.
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The ability to obtain EHR from multiple national providers and
integrate to an existing cohort allows greater insight into patient ad-
mission patterns and history [2,34,35]. However, EHRs alone do not
provide sufficient context to enable detailed evaluation of the data and
therefore additional data providers and cohorts (e.g. National Joint
Registry [36], Cancer Registry [37]) are used to provide personal
identifiers. The Hertfordshire Cohort Study [3] linked hospital admis-
sions to an existing cohort, the study was limited to a single English
county (Hertfordshire county). The authors had difficulty obtaining
EHRs for the cohort, similar to our own difficulties with national data
providers performing data linkage using different algorithms. In Scot-
land, the Scottish Health Surveys Cohort [5] is an example of a data
linkage between a cohort and health and social care in secondary care.
The study linked Outpatient, APC, Mental Health and Outpatient re-
cords at the patient-level to provide detailed healthcare patterns.

4.1. Limitations and challenges for sustainability

For our methodology to be a functional resource it is important to be
aware of the limits of health data and integration. Personal identifiers
were obtained via the KCMHR cohort study, with permission from
participants, and included participants’ first name, last name, date of
birth gender, and National Health Number which can be difficult to
obtain and record correctly. NHS number was not available for 20.05%
of participants. The matching process undertaken by NHS Digital set
NHS number as a mandatory variable, resulting in a lower success rate.
However, ISD in Scotland and SAIL in Wales did not place this same
requirement. We did not request data from Northern Ireland. This was
because of the complex structures surrounding EHRs in Northern
Ireland. No central organisation is responsible, instead it is delegated to
the local trust. In addition, there are security concerns surrounding
former Armed Forces personnel.

There are several problems with using national EHR datasets such as
HES, ISD or SAIL when integrating these datasets. The complexity of
gathering data at data centres and the large number of organisations
and institutions which can provide submissions can give rise to reduced
accuracy of the EHR including diagnoses, outcomes and patient man-
agement [38,39]. Further, completeness of records is poor, particularly
in Outpatient and A&E EHRs, giving rise to difficulty in linking vari-
ables and making any statistical analyses troublesome [3,5,24].

We were limited to the variables requested and provided by national
data providers, to enable linkage. We undertook a pragmatic approach
to matching variables based on commonality using variable definitions
provided by the data providers. This is a time-consuming exercise, and
might prove an obstacle in even larger datasets. Further, national
coding schemes, may have been interpreted differently by hospital trust
and coder leading to additional confusion and coding bias. It is im-
portant to be aware that though EHRs are widely used in research,
offering a broad range of information about treatment, diagnoses and
care, there are issues relating to determining data quality, completeness
of data and drawing conclusions from the data [40–42].

4.2. Unanswered questions and future developments

Our initial examination of the dataset has proved useful in identi-
fying the most common diagnoses, types of A&E admissions and
number of Outpatient appointments for Armed Forces personnel.
Further analysis of the dataset is required to evaluate clinical practices,
common diagnoses stratified by patient characteristics and variable
coding accuracy to improve dataset recording and retention. This could
include assessing A&E trends in admission, prevalence of A&E admis-
sions resulting in an APC episode and waiting times. Alternately, fur-
ther data linkage to primary healthcare records might make it possible
to identify pre and post follow-up health of individuals who have had a
contact with secondary care. This could improve the quality of analysis
and enable refinement of queries used on the dataset to improve the
quality of the dataset.

In the future, there is potential to develop a more responsive, real-
time and useful linked dataset based on the framework and meth-
odologies presented in this work. This would require more regular and
frequent updates from data providers, including more efficient data
linkage of cohort users.

5. Conclusions

It was possible to integrate secondary health records to create a
combined dataset of attendances to NHS hospitals in England, Scotland
and Wales. This is the first to combine and present analyses of EHRs
from Armed Forces personnel in the UK (excluding Northern Ireland).
The dataset was developed using variable commonality and included
both serving and ex-serving Armed Forces personnel, enabling evalua-
tion of healthcare utilisation. The NHS of England, Scotland and Wales
obtain, store and process EHRs using different methodologies. Scotland
and Wales utilise participant demographics without the need of a NHS
number whereas matching in England requires an NHS number. Future
work should seek to harmonise the protocols for national linkage and
seek a uniform UK-wide policy on EHRs for research. The increasing
shift towards the use of EHR by health trusts presents an opportunity to
monitor admissions, diagnoses and outcomes to inform public health
policy and service provision.

Ethical approval and consent to participate

Ethical approval was obtained from the London-Dulwich NHS
Research Ethics Committee in November 2014 (REC no: 07/Q0703/
36). Further, a Section 251 of the National Health Service Act 2006 (Ref
no: 15/CAG/0136) was obtained.
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Table 6
Most common ICD-10 codes assigned during Admitted Patient Care visit with gender comparison.

ICD-10 Code Description Occurrence (n= participants) Male (n= 874) Female (n= 109)

1 Z51 Other medical care 490 (n=116) 99 (85.34%) 17 (14.66%)
2 Z86 Personal history of certain other diseases 336 (n=190) 159 (83.68%) 31 (16.32%)
3 I10 Essential (primary) hypertension 295 (n=151) 140 (92.72%) 11 (7.28%)
4 Z37 Outcome of delivery 281 (n=198) 0 198 (100%)
5 Z30 Contraceptive management 272 (n=262) 247 (94.27%) 15 (5.73%)
6 R10 Abdominal and pelvic pain 266 (n=221) 155 (70.14%) 66 (29.86%)
7 M23 Internal derangement of knee 265 (n=217) 208 (95.85%) 9 (4.15%)
8 F17 Mental and behavioural disorders due to use of tobacco 259 (n=190) 168 (88.42%) 22 (11.58%)
9 Z72 Problems related to lifestyle 253 (n=197) 183 (92.89%) 14 (7.11%)
10 M54 Dorsalgia 222 (n=123) 102 (82.93%) 21 (17.07%)
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Summary table

What was already known?

• Electronic Healthcare Records are used to capture summaries
of care and contact to healthcare services; in the United
Kingdom they are intended to financially reimburse hospital
trusts for care provided.

• In the United Kingdom; England, Scotland and Wales maintain
separate data stores for Electronic Healthcare Records with
responsibility being devolved to National Governments. This
has introduced a lack of uniformity, making it difficult to
evaluate care, diagnosis and treatment across the entire
United Kingdom.

• Propriety systems are used by England, Scotland and Wales
National Health Services which makes it challenging to
perform analyses across England, Scotland and Wales.

What has this study added to the body of knowledge?

• This paper presents the first framework to integrate national
Electronic Health Records. It has been developed with col-
laboration from health professional and could be rolled out
nationally to assist in United Kingdom wide research.

• This paper found that variable completeness across the nations
was varied, with Outpatient care being sparsely coded
making it challenging for use in epidemiological research.

• This paper highlights the types of analyses which can be
performed when undertaking United Kingdom wide linkage,
with the potential of combing additional data modalities.
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